Accessing GPU/CPU powered instances
You can use the instance using Jupyter Lab, Command line interface (SSH, Terminal) or connect through your favourite editor like VS Code.
Connect to JupyterLab
Click on the ▶️ button to launch JupyterLab. JupyterLab is a powerful open source development environment for notebooks, code and data. Some of the things you can do using JupyterLab are
- Open a terminal (command line interface)
- Upload/Download files.
- Open CSV, PDF, image files. (The supported file size could vary based on the computer you are running).
- Build powerful dashboards
Check out the amazing demo video on how to use JupyterLab, you can also explore more about it in the docs.
Connect via SSH
Add your computer ssh keys here before launching the instance to connect from the terminal.
On right click, choose Get URLs and select copy SSH. Which will copy the string required to ssh into the instance.
If you have choosen a custom location to store your ssh key, then do not forget to add the location as -i path
ssh -i /path/to/your/key/id_rsa -P port_number domain_name
If you are new, all you need is a terminal to install some libraries then we recommend using terminal from the JupyterLab.
Press the +
button on upper left corner of the JupyterLab and launch a terminal.
If you have instances that are launched before adding your ssh keys, then you can do one of these to connect to those instances.
- Pause and Resume the instance.
- Destroy and launch a new instance.
How to get my local ssh keys?
If you have already created ssh keys, you can access them using
cat ~/.ssh/id_rsa.pub
It is also very simple to creat the new key. Execute the below commands on your terminal / PowerShell to generate an SSH key pair.
ssh-keygen -t rsa -b 4096
It will ask a couple of questions, you can simply press enter
to most of them.
Connect via VS Code
You can also access and run your deep learning programs straight from Visual Studio Code in 3 easy steps. To do that, you should have updated your public_ssh keys as mentioned earlier.
- Install Remote - SSH Extension.
- Add New SSH Host.
- Connect to Host.
Install the Remote-SSH Extension from the Visual Studio code extenstions.
Add & Connect to New Host
⇧⌘P
for Mac and Ctrl+Shift+P
for windows to open Command Palette
Connect via Jetbrains DataSpell IDE
You can also connect to the instance through Jetbrains DataSpell.
- Copy your instance JupyterLab URL using right-click menu.
- From DataSpell Extentions -> add New Jupyter Connection
- Choose Connect to Jupyter Server using URL
- Paste Jupyter URL into Server URL
- You will find to JarvisLabs.ai notebook server Running under Files Tab.
- Thanks to Isaac for the below demonstration.